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Summary Conclusions 
 

Based on a comprehensive review of the published scientific literature on forest-derived woody biomass 

greenhouse gas (GHG) emissions from energy production, we conclude: 

•   a priori assumptions regarding categorical emissions benefits from forest-derived woody 

biomass energy production are not supported, and an assumption of “carbon neutrality” is 

fundamentally flawed. 

• There is no scientific basis for the presumed carbon neutrality of biomass from managed 

forests.  

• IPCC Guidelines do not automatically consider biomass used for energy as ‘carbon neutral,’ 

even if the biomass is thought to be produced sustainably. 

• Carbon impacts of forest-derived woody biomass vary and depend on many established factors 

(including feedstocks, alternate fate, time horizon and age of the trees used for fuel, production 

methods, and forest management regimes).  

• The assessment of potential GHG emissions associated with woody biomass energy must 

account for these factors. 

Introduction 

 
In this paper, we assess whether a policy to treat biogenic CO2 emissions as carbon neutral, as 
stated below, has a defensible scientific foundation.  
 

“EPA’s policy is to treat biogenic CO2 emissions resulting from the combustion of biomass 
from managed forests at stationary sources for energy production as carbon neutral.” - 
pg. 75, EPA ... 

 
Where “managed forest” is defined by the US Environmental Protection Agency (EPA) as “a 
forest subject to the process of planning and implementing practices for stewardship and use of 
the forest aimed at fulfilling relevant ecological, economic and social functions of the forest.  
Also … it specifically comprises lands that are currently managed or those that are afforested, 
to ensure the use of biomass for energy does not result in the conversion of forested lands to 
non-forest use.” In this report, we assume the term “carbon neutral” to mean there are zero 
net emissions of greenhouse gases to the atmosphere from energy generation when all life-
cycle components (including forest growth elsewhere in the landscape) are considered at the 
time of energy generation (e.g., from forest wood sources to energy combustion).  
Here, we provide a brief summary of key findings from the peer-reviewed published literature, 
the Intergovernmental Panel on Climate Change Fifth Assessment Report, and material 
published in the EPA’s 2014 Draft Framework for Assessing Biogenic CO2 Emissions from 
Stationary Sources1.  

                                                           
1 U.S. EPA, Office of Air and Radiation, Framework for Assessing Biogenic CO2 Emissions from Stationary Sources 
(November, 2014). 
https://yosemite.epa.gov/sab/sabproduct.nsf/0/3235DAC747C16FE985257DA90053F252/$File/Framework-for-
Assessing-Biogenic-CO2-Emissions+(Nov+2014).pdf 

https://yosemite.epa.gov/sab/sabproduct.nsf/0/3235DAC747C16FE985257DA90053F252/$File/Framework-for-Assessing-Biogenic-CO2-Emissions+(Nov+2014).pdf
https://yosemite.epa.gov/sab/sabproduct.nsf/0/3235DAC747C16FE985257DA90053F252/$File/Framework-for-Assessing-Biogenic-CO2-Emissions+(Nov+2014).pdf
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Section I below assesses the validity of an a priori assumption of carbon neutrality of woody 
biomass energy. Section II discusses how carbon emissions impacts vary in timing and extent 
and depend on many established factors. 

I. a priori assumptions about the categorical carbon neutrality of forest biomass are not 

supported in the published literature. 

a) Peer-reviewed Literature 
 
Based on a comprehensive review of the published scientific literature on biomass emissions 
from energy production, we conclude that there is no defensible scientific foundation for EPA’s 
carbon neutrality policy. The vast majority of all published quantitative assessments have 
concluded that there are net greenhouse gas (GHG) emissions associated with the use of forest-
derived woody biomass for electricity production when compared to generating an equivalent 
amount of energy from fossil sources, even when accounting for subsequent biomass regrowth 
and avoided fossil emissions.2  
 
Two “meta-analyses” (i.e., compiling and summarizing data from multiple studies across a given 
discipline) have been produced on the topic of GHG emissions from forest-derived woody 
biomass energy. These two analyses, Buchholz et al. (2016) and Bentsen (2017), summarize the 
full breadth of quantitative studies conducted over the previous two-plus decades that assess 
the extent of carbon impacts/benefits incurred by burning biomass to produce energy (not 
limited to electricity).   
 
Buchholz, T., Hurteau, M.D., Gunn, J., Saah, D., 2016. A global meta-analysis of forest 
bioenergy greenhouse gas emission accounting studies. GCB Bioenergy 8, 281–289. 
https://doi.org/10.1111/gcbb.12245 
 
Buchholz et al. (2016) reviewed outcomes of 66 published forest biomass GHG emissions 
research studies published between 1991 and 2014, including 59 peer-reviewed studies and 
seven in the “gray” literature. These studies yielded 149 different scenarios for bioenergy 
generation that included  a range of forest ecosystems, a range of feedstocks (for example, mill 
wastes, forests residues, thinnings, etc.), benchmark fossil energy sources (e.g. coal, mix, 
natural gas, oil), or energy conversion efficiency (e.g. electricity, liquid transportation fuel, 
combined heat and power, heat), and were geographically distributed to most global forest 
regions.  

                                                           
2 The timing and degree of net emissions vary widely but depend upon fairly consistent factors. For example, the 
type of woody feedstock used to make energy matters greatly. Projected emissions from the tops and limbs of 
harvests that would have otherwise been left in the woods or at the roadside are less than emissions estimated 
from woody material that market forces dictate could either be used to make paper or energy. The impact to the 
atmosphere is different depending upon the product pathway. This topic is addressed in more detail in Section II 
below.  

https://paperpile.com/c/vTiSdh/jZot/?noauthor=1
https://doi.org/10.1111/gcbb.12245
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Of these 149 cases, 123 quantified a carbon payback period.3 Buchholz et al. found that 
payback periods ranged from zero years to 4,500 years. More than 80 percent of the examined 
cases found a payback period greater than zero years (101 of 123), illustrating that the majority 
of studied scenarios produced a carbon debt. In 14 cases where biomass was used to generate 
electricity, the mean payback period was 1,827 years. The figure below illustrates the variability 
of carbon payback periods, but also highlights the overwhelming number of cases where the 
payback period was not zero years.  
 
Bentsen, N.S., 2017. Carbon debt and payback time – Lost in the forest? Renew. Sustain. 
Energy Rev.  73: 1211-1217. doi:10.1016/j.rser.2017.02.004 
 
The Bentsen (2017) meta-analysis followed a similar approach to Buchholz et al. (2016) and 
evaluated 245 case studies conducted and published over the past 20 years. Bentsen’s results 
also show that the vast majority of bioenergy cases generate a payback period that is much 
greater than zero years (see Figure 1 below). Based on Bentsen, the mean payback periods by 
feedstock were: roundwood (102 years); whole trees (74 years); residues (18 years); stumps (14 
years), and mixed feedstocks (~75 years). As discussed in Section II, the reasons for variability 
are consistent and relevant to a policy discussion on biomass energy emissions.    
 

 
Figure 1. Figure 4 from Bentsen 2017, mean and range of carbon payback times (years) across five influential variables. 

                                                           
3 The concept of a “payback” of carbon dioxide emissions is generally attributed to Fargione et al. (2008) who 
calculated a potential carbon “debt” accrued to the atmosphere from switching from fossil fuels to biofuels. 
Studies use some version of this accounting approach and an articulation of timing to reach parity. That is, the time 
when carbon in the replacement or post-harvest growing forest plus the substitution benefits of using wood 
instead of a fossil fuel for energy equals the amount that would have been emitted in the fossil fuel energy 
scenario; or, the time when the full amount of emitted carbon is returned to the forest in comparison to a scenario 
where wood had not been used for energy (Ter-Mikaelian et al., 2015). The latter typically requires a longer period 
of time to reach parity. The use of parity and payback times has become the norm in studies of biomass energy 
emissions in the 10 years since Fargione et al. (Bentsen, 2017; Buchholz et al., 2016). Note that the concepts of 
parity and carbon debt payback are not the same as “zero carbon” emissions in that energy generation that 
combusts wood as a fuel releases carbon dioxide to the atmosphere at the time of generation. 
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The significant and compelling conclusion to be drawn from these two comprehensive 
assessments is that published research does not support a priori assumptions regarding 
categorical emissions benefits from biomass energy, and an assumption of “carbon 
neutrality” is fundamentally flawed. 
 
Several new peer reviewed studies have been published since the two meta-analyses discussed 
above. The new studies that focus on the production of electricity from woody biomass 
feedstocks are highlighted below (Table 1). This new work continues to bolster the conclusion 
that there is no scientific basis for the presumed carbon neutrality of biomass from managed 
forests. Time frames for payback (or “parity”) range from 0 to greater than 100 years for a 
range of feedstock and forest types, and forest management regimes.  
 
Table 1. Summary of relevant studies published since Buchholz et al. 2016 and Bentsen 2017. 

Study Payback Time 
Frame 

Energy Substituted Feedstock 

(Torssonen et al., 2016) 10 - > 20 years Coal Electricity Harvest Residue 

(Hanssen et al., 2017) 0-29 years EU Fossil Grid Electricity Harvest Residue; Mill Residue; Pulpwood 

(Laganière et al., 2017) 0 - > 100 years Coal, Oil, Natural Gas Electricity Harvest Residue; Mill Residue; Pulpwood 

(Sterman et al., 2018) 44- 104 years Coal Electricity Whole trees; Harvest Residues. 

(Cintas et al., 2016) 0 (coal) – 45 
years (natural 
gas)  

Coal and Natural Gas Electricity Harvest Residues (“slash”) 

(Madsen and Bentsen, 2018) 1 year Coal, Combined Heat and Power Harvest Residues 

(Law et al., 2018) No payback by 
2100 

Coal and Natural Gas Electricity Harvest Residues 

(Booth, 2018) > 50 years Coal Electricity Harvest Residue 

 

b) IPCC Emission Estimates of Bioenergy Production Systems 
 
Intergovernmental Panel on Climate Change (IPCC) has warned that, “IPCC Guidelines do not 
automatically consider biomass used for energy as ‘carbon neutral,’ even if the biomass is 
thought to be produced sustainably.”4  
 
The IPCC’s 5th Assessment Report states,  
 

“The combustion of biomass generates gross GHG (greenhouse gas) emissions roughly 
equivalent to the combustion of fossil fuels. If bioenergy production is to generate a net 
reduction in emissions, it must do so by offsetting those emissions through increased net 
carbon uptake of biota and soils. The appropriate comparison is then between the net 
biosphere flux in the absence of bioenergy compared to the net biosphere flux in the 
presence of bioenergy production. Direct and indirect effects need to be considered in 

                                                           
4 IPCC Task Force on National Greenhouse Gas Inventories, Frequently Asked Questions, https://www.ipcc-
nggip.iges.or.jp/faq/faq.html,  Q2-10 

https://www.ipcc-nggip.iges.or.jp/faq/faq.html
https://www.ipcc-nggip.iges.or.jp/faq/faq.html
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calculating these fluxes.”5  
The section then lists six direct sources of GHG emissions associated with bioenergy and one 
indirect source: 
 

1. GHG emissions associated with biomass production harvest, transport and 
conversion into secondary energy carriers (wood pellets or liquid or gaseous fuels) 

2. Carbon dioxide and other GHGs released during combustion 
3. Releases of carbon dioxide associated with land disturbance  
4. Short lived GHGs associated with combustion like nitrogen oxides, carbon monoxide, 

and black carbon  
5. Alteration of physical properties that affect surface energy balance including albedo 

or land reflectivity 
6. GHGs from land management and alteration of soil biogeochemistry including 

emissions of nitrous oxide from fertilizer and methane emissions 
7. Indirect effects include emissions associated with induced land use changes 

elsewhere   

The assessment then addresses whether “… the CO2 (carbon dioxide) emitted from biomass 

combustion is climate neutral because the carbon that was previously sequestered from the 

atmosphere (before combustion) will be re-sequestered if the growing stock is managed 

sustainably. The assessment finds that “[t]he shortcomings of this assumption have been 

extensively discussed in environmental impact studies and emission accounting mechanisms”6 

and states that "the neutrality perception is linked to a misunderstanding of the guidelines for 

GHG inventories.”7 

 
The assessment cites references that demonstrate that if forests are allowed to continue to 
grow rather than being cut and burned, “forest bioenergy systems have higher cumulative 
carbon dioxide emissions than a fossil reference system (for a time period ranging from a few 
decades to several centuries).”  
 
II. Carbon impacts of forest-derived woody biomass vary and depend on many established 
factors (including feedstocks, alternate fate, time horizon, age of harvested forest, production 
methods, and forest management regimes).  

a) Peer-Reviewed Literature 
 

Instead of supporting a priori assumptions of carbon neutrality, the established findings in the 

studies summarized above firmly recognize that carbon emissions impacts from biomass energy 

                                                           
5 Working Group 3 (2013), first paragraph of section 11.13.4 
6 Fifth Assessment Report, IPCC, Agriculture, Forestry and Other Land Use (AFOLU) (IPCC AR5) 
http://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_chapter11.pdf  pg 879 
7 Fifth Assessment Report, IPCC, Agriculture, Forestry and Other Land Use (AFOLU) 
http://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_chapter11.pdf  pg 879, footnote 14 

http://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_chapter11.pdf
http://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_chapter11.pdf
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vary in extent and depend on many established factors including biomass feedstock type, 

geographic regions, timeframes, production methods, forest management regimes, energy type 

(and displaced energy source), and alternative fates, among others. Further, the climate 

impacts of biogenic carbon dioxide are identical to geologic (i.e., fossil) carbon dioxide, so it is 

imperative to understand the relative contribution of emissions from both sources to the 

atmospheric carbon pool and to assess the atmospheric residence time.  

 

Consistent with the common biomass energy accounting principles, Walker et al. (2013) 

proposed that to understand GHG emissions associated with biomass energy generation we 

need to know something about the woody feedstock being used (e.g., harvest residues or 

pulpwood), the form of biomass energy being generated (e.g., heat or electricity), the fossil fuel 

being displaced (e.g., coal or natural gas), and finally, how forests are managed8 or harvested to 

produce the desired feedstock. In addition, understanding the alternative potential fates of the 

feedstock is also critical. This framework plays out in the conclusions of both Buchholz et al. 

(2016) and Bentsen (2017) when categorizing the observed differences in carbon payback 

periods in published literature. Bentsen concludes that the use of harvest residues (the tops 

and limbs produced as a result of harvesting wood for other products) for energy generation 

results in shorter times until atmospheric carbon is removed by regrowth (mean = 18 years) 

than the use of roundwood and whole trees (102 and 74 years respectively). This is important 

to note and highlights the need for broadly-accepted definitions of forest-derived woody 

biomass feedstocks, such as “residues” and “whole trees.”  

 

Forest ecosystems with typically long time frames between natural disturbance events (such as 

fires in parts of the Pacific Northwest) also tend to have longer payback periods. Studies of 

short-rotation plantation systems had mixed results in Buchholz et al., but tended to have 

shorter payback periods than natural forest systems in Bentsen’s analysis. In studies where an 

increase in harvest is required to meet biomass demands (e.g., Holtsmark 2012; Walker et al. 

2013), the time to emissions parity with the fossil fuel alternative can be long or never occur. 

Additionally, studies that attribute land-use decisions where additional land becomes forested 

typically show short-term emissions in excess of the fossil fuel baseline. However, those 

benefits can be negated when “leakage” in the form of displaced production of existing forest 

products (e.g., paper) is accounted for (Galik et al. 2016). Benefits also rely on assumptions 

                                                           
8 It has been long known that older forests sequester more carbon than younger ones (Harmon et al., 1990). More 

recently, a study of all types of forests found that one-half of living biomass (and carbon) was in the largest one 

percent diameter trees regardless of forest type or location (Lutz et al., 2018). Intensively-managed forests keep 

the mean age of trees in the range of decades to centuries well below their natural lifespan (Gunn et al., 2014; 

Gunn and Buchholz, 2018). Hence, forest management that includes removals of bioenergy feedstocks not only 

releases CO2 soon after harvest into the atmosphere, but changes forest structure and age class distribution with 

long-term implications for carbon storage on the landscape.  
 

https://paperpile.com/c/vTiSdh/vDaw/?noauthor=1
https://paperpile.com/c/vTiSdh/Aq9g+vDaw/?prefix=e.g.%2C%20,
https://paperpile.com/c/vTiSdh/Aq9g+vDaw/?prefix=e.g.%2C%20,
https://paperpile.com/c/vTiSdh/0DSu
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about future landowner behavior changes that result in non-forest land being converted to 

establish tree plantations.  

 
Birdsey et al. (2018) also recently summarized the range of outcomes from specific case studies 
for woody biomass electricity generation in the southeast US. The results are affected by the 
type of woody feedstock used, accounting practices, and how forests are managed (Birdsey et 
al., 2018). As Searchinger et al. (2018) and many others have frequently pointed out, electricity 
generated from wood combustion releases substantially more CO2 (per kilowatt hour) than coal 
or natural gas because of the inefficient conversion of heat to electricity.  
 
b) EPA 2014 Biogenic Assessment Factor (BAF) Case Studies (Appendix M) 
 
The EPA Scientific Advisory Board (SAB) was asked by the EPA to provide a peer review of its 
Framework for assessing the biogenic emissions from stationary sources that burn biomass. The 
EPA’s Framework was developed to generate the “Biogenic Assessment Factor” (BAF), which is 
a factor that weights the stack emissions to account for the biological carbon cycle effects 
associated with their growth, harvest, and processing. According to the SAB (2012), “[t]he BAF 
is an accounting term developed in the Framework to denote the offset to total emissions 
(mathematical adjustment) that reflects a biogenic feedstock’s net carbon emissions after 
taking into account its sequestration of carbon, in biomass or soil, or emissions that might have 
occurred with an alternate fate had it not been used for fuel.”9  
 
The EPA’s Framework for Assessing Biogenic CO2 Emissions from Stationary Sources presents 
two relevant case studies. The cases studied feature softwood roundwood (i.e., the 
merchantable trunk of a tree that may have other market uses, such as for pulp-making) as a 
biomass energy feedstock in the southeast US and residues from logging/harvesting (i.e., tops 
and limbs not typically merchantable for other products) in the Pacific Northwest (Fig. 2). These 
case studies illustrate a temporal component to potential emissions associated with generating 
electricity from woody biomass compared to the same energy derived from fossil fuels: the BAF 
begins > 0 (indicating net emissions of biomass energy greater than the baseline) and declines 
to < 0 (indicating net emissions of biomass energy less than the baseline) over time. For the 
southeast US roundwood case study (where round wood is used as the feedstock), this 
transition to < 0 happens at around year 40. When logging residues are the feedstock, the 
transition happens sooner (20-25 years). Both results are consistent with the summary findings 
of the two meta-analyses described above.  
 
 

                                                           
9 SAB Review of EPA’s Accounting Framework for Biogenic CO2 Emissions from Stationary Sources (September 
2011), (September 28, 2012) 
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Figure 2. EPA Biogenic Assessment Factors (BAF) for EPA Scenarios (southeast roundwood, PNW harvest residues). AFB = 
Anticipated Future Baseline. Data from table M-2 in EPA 2014. 

 
The EPA (2014) sums up this dynamic well in Appendix B:  

“In general, accounting for temporal effects will be most significant when considering 

future potential fluxes related to long rotation feedstocks (e.g., roundwood), activities 

that affect the equilibrium storage in soil carbon pools, decay rates, or in cases of 

significant land use change, where biogenic feedstock production has implications for 

long-term emissions changes in terrestrial carbon stocks.”  

Published case studies continue to emphasize the statement above and support the conclusion 
that the assessment of potential GHG emissions associated with woody biomass energy must 
account for all of these factors. 
 

Conclusion 
 

Declaring bioenergy to be carbon neutral will not change the fact that the "combustion of 
biomass generates gross GHG emissions roughly equivalent to fossil fuels" (IPCC AR5). The 
critical concern is concentrations of GHGs in the atmosphere. Neither the declaration of carbon 
neutrality, nor the guarantee of a sustainably-managed forest can assure that the amount of 
carbon dioxide in the atmosphere will avoid “dangerous anthropogenic interference with the 
climate system.”10 Accounting for the contribution of forest-derived woody biomass energy 
GHG emissions to the atmosphere is clearly a complex endeavor and methods are evolving 
rapidly in the scientific literature. Indeed, it has more recently been demonstrated that there is 
a need for full lifecycle assessments and systems dynamics accounting. Such an accounting 
framework tracks all of the carbon at all times throughout the entire cycle of harvesting, fuel 

                                                           
10 UN Framework Convention on Climate Change Article 2, 1992.  

https://unfccc.int/resource/docs/convkp/conveng.pdf 
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production and transportation and combustion of the wood. This provides a time-evolving 
accounting system not only for carbon, but for other GHGs associated with forest-derived 
biomass energy such as N2O from fertilizing reforestation and especially plantations, and any 
methane emissions associated with the storage of wood pellets or wood chips (e.g., Sterman et 
al., 2018). This system also does away with the need for specific time frames or even the use of 
arbitrary time dependent global warming potentials. 
 

Published studies to date provide a great deal of insight on the potential risks and benefits of 

using wood for energy. Based on our comprehensive review of the published scientific 

literature on forest-derived woody biomass greenhouse gas (GHG) emissions from energy 

production, we conclude: 

 
1) a priori assumptions regarding categorical emissions benefits from forest-derived woody 

biomass energy production are not supported, and an assumption of “carbon neutrality” 
is fundamentally flawed.; 

2) There is no scientific basis for the presumed carbon neutrality of biomass from managed 
forests. 

3) IPCC Guidelines do not automatically consider biomass used for energy as ‘carbon 
neutral,’ even if the biomass is thought to be produced sustainably. 

4) Carbon impacts of forest-derived woody biomass vary and depend on many established 
factors (including feedstocks, alternate fate, time horizon, production methods, and 
forest management regimes).  

5) The assessment of potential GHG emissions associated with woody biomass energy 
must account for these factors. 
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